Structured Prediction by Conditional Risk Minimization
نویسندگان
چکیده
We propose a general approach for supervised learning with structured output spaces, such as combinatorial and polyhedral sets, that is based on minimizing estimated conditional risk functions. Given a loss function defined over pairs of output labels, we first estimate the conditional risk function by solving a (possibly infinite) collection of regularized least squares problems. A prediction is made by solving an auxiliary optimization problem that minimizes the estimated conditional risk function over the output space. We apply this method to a class of problems with discrete combinatorial outputs and additive pairwise losses, and show that the auxiliary problem can be solved efficiently by exact linear programming relaxations in several important cases, including variants of hierarchical multilabel classification and multilabel ranking problems. We demonstrate how the same approach can also be extended to vector regression problems with convex constraints and losses. Evaluations of this approach on hierarchical multilabel classification show that it compares favorably with several existing methods in terms of predictive accuracy, and has computational advantages over them when applied to large hierarchies.
منابع مشابه
Structured Prediction Theory and Voted Risk Minimization
We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملStructured Prediction Theory Based on Factor Graph Complexity
We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction...
متن کاملKernel conditional random fields : representation, clique selection, and semi-supervised learning
Kernel conditional random fields are introduced as a framework for discriminative modeling of graph-structured data. A representer theorem for conditional graphical models is given which shows how kernel conditional random fields arise from risk minimization procedures defined using Mercer kernels on labeled graphs. A procedure for greedily selecting cliques in the dual representation is then p...
متن کاملRisk Minimization in Structured Prediction using Orbit Loss
We introduce a new surrogate loss function called orbit loss in the structured prediction framework, which has good theoretical and practical advantages. While the orbit loss is not convex, it has a simple analytical gradient and a simple perceptron-like learning rule. We analyze the new loss theoretically and state a PAC-Bayesian generalization bound. We also prove that the new loss is consist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016